UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER
LIBRARY ROUTINE K 11 - 192

TITLE
DURATION

Quartimax Orthogonal Rotation of Factors (DOI Only)
$.36 \mathrm{mp}+\mathrm{ct}=$ time in seconds
The first termis the time required for input and output where \underline{m} is the number of factors, and \underline{p} the number of variables in the matrix being rotated. The second term is the time required for computation. Only very rough estimates can be made of the number \subseteq of cycles required for convergence. As the number of factors increases, with a fixed number of variables, \leq increases rapidly. Centroid factors will. usually require a larger c than principal axes factors. Approximate estimates of c may be taken from the following table:

NUMBER of FACTORS	4	6	8	12	16
c	4	7	12	21	36

The time t required for each cycle depends primarily on the number of factors and secondarily on the number of variables. The table below can be used for a rough estimation of t.

NUMBER of FACTORS	3	5	9	13	17	21
t (in seconds)	1	17	50	120	200	320

DESCRIPTION
The aim of rotation may be taken as that of decreasing the complexity of the factorial description of the variables. The quartimax method of rotation provides for finding the orthogonal transformation which maximizes the variance of the squared factor loadings (thereby achieving a high degree of inequality among the factor loadings). This can be shown to be equivalent to maximizing the fourth powers of the loadings. In applying the method, two factors are operated upon at a time. The maximizing angle of transformation ϕ for two factors i and j is given by the equation:

$$
\phi=1 / 4 \arctan \frac{4 \sum_{k} f_{k i} f_{k j}\left(f_{k i}^{2}-f_{k j^{+}}^{2}\right)}{\sum_{k}\left(f_{k i}^{2}-f_{k j}^{2}\right)^{2}-4 f_{k i}^{2} f_{k j}^{2}},
$$

where $f_{k i}$ is the matrix of factor loadings. This program obtains the quartimax solution by successive transformations of pairs of factors until the sum of fourth powers no longer increases. For a more detailed account of the method, see: J. O. Neuhaus and C. F. Wrigley, "The quartimax method: An approach to orthogonal simple structure," Brit. J. statist. Psychol., Nov. 1954.

OUTPUT The output consists of a two-hole delay character punched at the end of each cycle of rotations and the set of rotated factors punched by columns with an \mathbb{N} at the end of each factor.

TAPES USED

INSTRUCTIONS to ILLIAC OPERATOR

1. Program Tape. This is the same for all problems and may be copied from the library tape.
2. Parameter Tape. This is punched as follows:

006 K
00 (p)F 00 (p)F
0027 K
00 (m)F 00 (m)F
22278 N
where (p) is the number of variables and (m)
is the number of factors.
3. Matrix Tape. Multiply each element of the matrix of factor loadings by one-tenth and then punch the scaled matrix factor by factor in the form required for Illinois Library Routine N 3. The character \mathbb{N} is punched after the last loading on each factor.

1. Program tape
2. Parameter tape Bl. up
3. Data tape Bl. down

If continuous punching has not begun when estimated
time has elapsed, raise the black switch to OBEY. Wait for Illiac to stop on the order 24 090: Then start by raising white switch. Continuous punching will begin immediately and last less than 4 minutes.

Program ends on OF from 116.
CAPACITY
(m) $\cdot(\mathrm{p}) \leq 745$

COMMENTS
At the end of each complete cycle of rotations the increase in the sum of fourth powers, $\Sigma_{i} \Sigma_{j} f_{i j}^{4}$, is inspected to see if another cycle of rotations should be made. If the increase has been less than $T \times 2^{-45} \times 10^{4}$ then no further iterations will be made, where T is an integer less than 1,000 . The tolerance, T, is taken to be 10 unless specified. If the tolerance desired is not ten then insert the following immediately before the " 22278 N " on the parameter tape:

$$
\begin{aligned}
& 0029 K \\
& 00 \mathrm{FO}(\mathrm{~T}) \mathrm{F}
\end{aligned}
$$

If it is necessary to complete the rotation during a second time period on the computer, use the following procedure. The black switch is raised to the "obey" position about five minutes before the first time period is to end; the computer will complete a cycle of rotations and then stop. Start with the white switch as soon as the computer stops and the rotated factors will be printed. Proceed in the second session as in the first, but using the rotated factor tape as the matrix tape.
Kll contains an old obsclete version of Th whoh does not agree with the serial copy of T2. This Gid version is correct, however.

RT: $10 / 13 / 60$
DATE November 17, 1955
PROGRAMMED BY J. O. Neuhaus

This program was prepared for the library by the Psychology Department.

USE OF STORAGE - QUARTIMAX

LOCATION
CONTENTS

5
6

7
8

11

12
13
14
15
16

17

18

19
20
21

22
23
24
25
26
$001 F 001 F$
00 pF 00 pF : variables (on parameter tape)
$40\binom{279}{+\mathrm{mp}} \mathrm{FO} \mathrm{F} ; \cos \frac{\pi}{8}$
$\sin \frac{\pi}{8}$
$-\sin \frac{\pi}{8}$
previous $\sum_{i, j} f_{i j}^{4}$.
279×2^{-39} during input\%, last $\sum_{i j} f_{i j}^{4}$.
during calculation
counter (accumulating variables)
i
j
binary switch (after forming sum)
$2 \sum_{k} f_{k i}^{2}$
$2 \sum_{k} f_{k j}^{2}$
$4 \sum_{k} f_{k i}^{3} f_{k j}$
$4 \sum_{k} f_{k i} f_{k j}^{3}$
50 mp 30 F
temporary store for $\left(\sum_{k=1}^{p} f_{k i} f_{k j}\left(f_{k i}^{2}-f_{k j}^{2}\right)\right)=N u-$ merator

Denominator
binary switch
$1 / 2 \cos \frac{\pi}{8}$
$1 / 2 \sin \frac{\pi}{8}$
$\frac{\pi}{8}$

LOCATION

27
28
29

31
52
65
95
124
m : factors (on parameter tape)
50 279F 75 279F
tolerance T

DNI Library Routine N - 3
SCP Library Routine P - 6
sin - cos Library Routine T-1
arctan-Library Routine T - 2
body - Main Routine

FLOW CHART - QUARTTMAX

LOCATION	ORDER	NOTES	PAGE 4
31	702 F I4 I8F	increase $4 \sum_{k} f^{3}{ }_{k i} f_{k j}=\mathbb{N}(18)$	Accumulate
32	4018 F		Sums
	50 IF		
33	7 J 2 F	increase $4 \sum_{k} f_{k i} f_{k j}^{3}=N(19)$	
	L4 19F		
34	40 19F		
	L5 23L		
35	L45F		
	4023 L		
36	46 29L		
	L5 26L		
37	L4 5F	advance addresses	
	40 26L		
38	42 29L		
	L5 12F		
39	L4 5F		
	$4012 F$		
40	106 F	test for completion of sums	
	$3642 \pm$		
41	26235		
	00 F		
42	L5 18F	store Numerator as N (19)	
	L0 19F		
43	40 21F	test switch	
	L1 15F		
44	3649 L	set switches	
	4923 F		
45	4115 F		
	L5 24F		
46	407 F		
	L5 25F		
47	408 F	$\begin{aligned} & \text { store } \cos , \sin ,-\sin \text { of } \frac{\pi}{8} \\ & \text { at } 7,8,9 \end{aligned}$	
	Ll 25F		

LOCATION	ORDER	NOTES	PAGE 6
64	408 F		
	Ll 1F	store cos, sin, - sin	
65	409 F		
	4123 F		
66	2687 L		
	L5 F		
67	LO 26F		
	26 61L		
68	L4 21F		
	3671 L		
69	L5 26F		
	L4 26F		Find the angle
70	L4 F		of rotation θ
	22 61L		
71	23 69L		
	00 F		
72	L5 22F		
	$3275 L$		
73	L4 21F		
	3274 L		
74	22 60L		,
	L5 F		
75	22 61L		
	L0 21F		
76	3671 L		
	2274 L	\pm	
77	41 F		
	50 F		
78	L1 22F		
	$6621 F$		
79	S5 F		
	5079 L		

LOCATION	ORDER	NOTES	PAGE 7
80	26 95F		
	102 F .		
81	40 F		
	LI F		
82	2657 L		
	$5021 F$		
83	7 J 22 F		
	$3285 L$		
84	Ll 26F		
	10 IF		
85	2657 L		
	L5 26F		
86	10 lF		
	2657 L		
87	412 F		
	50 SS		
88	7 J 7 F		
	40 F		
89	50 SS		
	7 J 8 F		
90	L4 F		
	40 lF		
91	50 SS		
	7 JF		
92	40 F		
	50 SS	find $k^{\text {th }}$ component	
93	7 J 7 F	of the rotated vectors	
	L4 F		
94	403 F		Rotate the $i^{\text {th }}$
	L4 3F		and $j^{\text {th }}$ factors
95	40 SS		
	L5 1 F		

LOCATION	ORDER	NOTES	PAGE 8
96	L 41 F		
	40 SS		
97	F5 87L		
	4287 L		
98	4296 L		
	00 20F		
99	46 91L		
	F5 92L		
100	42 92L		
	O 20F	reset addresses	
101	4689 L		
	46 95L		
102	L5 5F		
	L4 2 F		
103	$402 F$		
	LO 6F		
104	$36105 \pm$		
	2287		
105	41 16F		
	4017 F		
106	$4018 F$		
	$4019 F$	clear accumulators	
107	4012 F		
	Ll 23F	test switch	
108	36118 L		
	L5 43L		
109	L4 5F		
	46 43L		
110	L5 23L		
	LO 6F		
111	4023 L		
	46295		

LOCATION	ORDER	NOTES	PAGE 9
112	4287 L	reset addresses in	
	4296 L		
113	46 91L		
	L5 26L	accumulation and	
114	LO 6F		
	40 26L	rotation routines	
115	42 29L		
	42 92L		
116	4689 L		
	46 95L		
117	2623 L		
	00 F		
118	L5 14F		
	L4 5F	$j \rightarrow j+1$	
119	4014 F		
	LO 27 F	test (i-m)	
120	36126 L		
	L5. 23 L		
121	L0 6F		
	$40 こ 3 \mathrm{~L}$	reset addresses in	
122	46 29L		
	4287 L	- accum. and rotation	
123	42 96L		
	46 91L	routines for $j^{\text {th }}$ factor	
124	L5 43L		
	L0 5F		
125	4643 L		Reset addresses,
	2622 L		increase counters,
126	L5 13F	$i \rightarrow i+$	and test to find
	L4 5F	$1 \rightarrow 1$	position in pro-
127	40 13F		gram
	L0 27F	test (i - m)	

LOCATION	ORDER	$\cdots \quad$ NOTES	PAGE 10
128	36134 L		
	L5 13F		
129	L4 5F		
	4014 F		
130	L5 23L		
	L4 6F	reset addresses for	
131	4026 L		
	42291	$i^{\text {th }}$ factor	
132	4292 L		
	46 89L		
133	4695 L		
	26124 L		
134	L5 28 F		
	40 5L		
135	4023 L		
	4629 L		
136	4287 L		
	4296 L		
137	46915		
	L4 6F	reset addresses to	
138	4026 L		
	42 29L	prepare for a new cycle	
139	4292 L		
	4689 L		
140	4695 L		
	L5 43L		
141	LO 5F		
	4643 L		
142	22 4L		
	00 F		
143	417 F		
	418 F		

LOCATION	ORDER		NOTES PAGE 11
144	L5 SS		
	50144 L		
145	26 52F		
	L5 144L		
146	L4 5F		
	46144 L		- Punch
147	L5 8F		Rotated
	L4 5F		Factors
148	408 F		
	L0 6F		
149	36150 L		
	26144 L		
150	92770 F		
	92 129F		
151	L5 7 F		
	L4 5F		
152	407 F		
	LO 27F		
153	36154 L		
	22143 L		
154	OF F		
	41 11F		
155	506 F		
	75 27F		
156	0019 F		
	L4 20F	form mp	
157	46 20F		
	467 F	and plant	Form
158	L5 23L		dependent
	L4 6F		parameters
159	4026 L		
	42 29L	- plant address of lst	

JON: mge
RJT:
$11 / 17 / 55$

